Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Indian J Pharmacol ; 53(5): 377-383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34854406

RESUMO

INTRODUCTION: The use of natural resources as medicines for cancer therapies has been described throughout history in the form of traditional medicines. However, many resources are still unidentified for their potent biological activities. Clerodendrum viscosum is a hill glory bower reported as a remedy against oxidative stress, skin diseases, and intestinal infections. MATERIALS AND METHODS: We have collected the C. viscosum leaves and used for the preparation of 70% methanolic extract (CVLME). Then, CVLME has been confirmed for anticancer properties on various cancer cell lines by evaluating cytotoxicity, cell cycle analysis, induction of ROS and apoptosis, and nuclear fragmentation. Further, the phytochemical analysis of CVLME was evaluated through high-performance liquid chromatography. RESULTS: Cell proliferation assay revealed the selective cytotoxicity of CVLME against breast cancer cell line (MCF-7). The FACS-based cell cycle analysis showed increased subG1 (apoptosis) population dose dependently. Further, the apoptosis-inducing effect of CVLME was confirmed by annexin staining. Flow cytometry and confocal microscopy revealed the selective ROS generation upon CVLME treatment. The confocal-based morphological study also revealed condensed and fragmented nuclear structure in CVLME-treated MCF-7 cells. Phytochemical investigations further indicated the presence of tannic acid, catechin, rutin, and reserpine which might be the reason for the anticancer activity of CVLME. CONCLUSION: The above-combined results revealed the anticancer effect of CVLME, which may be due to the selective induction of ROS in breast carcinoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Clerodendrum , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Folhas de Planta
2.
Clin. transl. oncol. (Print) ; 23(4): 718-730, abr. 2021. ilus
Artigo em Inglês | IBECS | ID: ibc-220907

RESUMO

Background With 9.6 million deaths in 2018, cancer remains the second leading cause of death worldwide. Breast cancer is the most deadly type of cancer among females, with 55.2% of crude incidence rate and 16.6% of crude mortality rate. Purpose The present study was aimed to investigate the anti-breast cancer potential of natural dietary flavonoid, apigenin isolated from Clerodendrum viscosum leaves. Methods Apigenin was evaluated for in-depth anticancer activity in MCF-7 cells using cell viability assay, cell cycle analysis, Annexin-V-FLUOS staining, ROS induction, morphological analysis, and western blot analysis. Results Apigenin showed selective cytotoxicity on MCF-7 cells with an IC50-56.72 ± 2.35 µM, while negligible cytotoxicity was observed on WI-38 cells. Further, the flow cytometer-based analysis showed that apigenin halted MCF-7 cells in the G2/M phase arrest followed by dose-dependent apoptosis. Moreover, the FACS and confocal microscopy results confirmed the elevation of intracellular ROS and nuclear fragmentation in apigenin-treated MCF-7 cells. Western blots showed up-regulation of cell cycle regulatory proteins, increased p53 expression, Bax/Bcl-2 ratio, activation of caspases, and cleavage of PARP. Finally, apigenin treatment in the presence of Pifithrin-µ showed decreased apoptotic population and it was further confirmed through western blotting study. The results revealed the vital role of p53 in apigenin-induced apoptosis in MCF-7 cells. Conclusions In the present findings, treatment of apigenin-induced intracellular ROS in MCF-7 cells followed by induction of G2/M phase cell cycle arrest and further apoptosis through the regulation of p53 and caspase-cascade signaling pathway (AU)


Assuntos
Humanos , Feminino , Antineoplásicos Fitogênicos/administração & dosagem , Apigenina/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo , Clerodendrum/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Fragmentação do DNA , Citometria de Fluxo , Folhas de Planta/química , Proteína Supressora de Tumor p53
3.
Mol Biol Rep ; 48(1): 539-549, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394232

RESUMO

Brain and CNS-related cancers are rare; however, 0.3 million incidences and 0.24 million deaths in 2018 demonstrates the unrelenting associated dangers. Glioblastoma is a brain cancer of star-shaped glial cells. It is almost universally fatal within 2 years of diagnosis despite maximal medical therapies. This study aims to evaluate the in-depth anticancer activity of acacetin and apigenin on glioblastoma cells (U87). In the present report, we have isolated two flavonoids, acacetin and apigenin; and studied the in-depth anticancer activity on U87 cells. Selective cytotoxicity of acacetin and apigenin was observed towards the U87 cells (IC50: 43.73 ± 1.19 and 48.18 ± 1.37 µM, respectively). The flow cytometer-based result revealed the induction of G2/M phase arrest along with the increase in sub G1 population upon compound treatment. Annexin-V-FLUOS and DAPI staining also confirmed the apoptosis-inducing effects of compounds. Flow cytometer and confocal microscopy-based DCFH-DA staining showed ROS-inducing effect of the compounds. The up-regulation of p21 and down-regulation of Cyclin-A1, Cyclin-B1, and Cdk-1 revealed the G2/M phase arrest mechanism of acacetin and apigenin. Furthermore, western blotting result confirmed the activation of intrinsic pathway of apoptosis upon acacetin treatment and activation of both extrinsic and intrinsic pathways of apoptosis upon apigenin treatment through the regulation of Bax, t-Bid, caspase 8, caspase 9, caspase 3, and PARP. The obtained result showed a significant effect (P < 0.05) of acacetin and apigenin on U87 cells. Acacetin and apigenin-induced ROS is responsible for the induction of cell cycle arrest and activation of caspase-cascade pathways in U87 cells.


Assuntos
Apigenina/farmacologia , Flavonas/farmacologia , Glioblastoma/tratamento farmacológico , Proteínas de Neoplasias/genética , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Mitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Clin Transl Oncol ; 23(4): 718-730, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32715386

RESUMO

BACKGROUND: With 9.6 million deaths in 2018, cancer remains the second leading cause of death worldwide. Breast cancer is the most deadly type of cancer among females, with 55.2% of crude incidence rate and 16.6% of crude mortality rate. PURPOSE: The present study was aimed to investigate the anti-breast cancer potential of natural dietary flavonoid, apigenin isolated from Clerodendrum viscosum leaves. METHODS: Apigenin was evaluated for in-depth anticancer activity in MCF-7 cells using cell viability assay, cell cycle analysis, Annexin-V-FLUOS staining, ROS induction, morphological analysis, and western blot analysis. RESULTS: Apigenin showed selective cytotoxicity on MCF-7 cells with an IC50-56.72 ± 2.35 µM, while negligible cytotoxicity was observed on WI-38 cells. Further, the flow cytometer-based analysis showed that apigenin halted MCF-7 cells in the G2/M phase arrest followed by dose-dependent apoptosis. Moreover, the FACS and confocal microscopy results confirmed the elevation of intracellular ROS and nuclear fragmentation in apigenin-treated MCF-7 cells. Western blots showed up-regulation of cell cycle regulatory proteins, increased p53 expression, Bax/Bcl-2 ratio, activation of caspases, and cleavage of PARP. Finally, apigenin treatment in the presence of Pifithrin-µ showed decreased apoptotic population and it was further confirmed through western blotting study. The results revealed the vital role of p53 in apigenin-induced apoptosis in MCF-7 cells. CONCLUSIONS: In the present findings, treatment of apigenin-induced intracellular ROS in MCF-7 cells followed by induction of G2/M phase cell cycle arrest and further apoptosis through the regulation of p53 and caspase-cascade signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apigenina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apigenina/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Núcleo Celular/efeitos dos fármacos , Clerodendrum/química , Fragmentação do DNA , Feminino , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Folhas de Planta/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores
5.
Curr Med Sci ; 40(5): 810-816, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33123895

RESUMO

FMS-like tyrosine kinase 3 (FLT3) mutation is strongly associated with poor prognosis in acute myeloid leukemia (AML). Though many FLT3 inhibitors have been developed for clinical application with 34%-56% complete remission rate, patients would develop resistance sooner or later after initial response to tyrosine kinase inhibitors (TKIs), such as gilteritinib. And increasing studies have shown that several resistance related mutations of FLT3 emerged during the AML progression. Thus, further investigation is warranted for these FLT3mut AML patients to achieve a better treatment outcome. 4-Hydroxyphenyl retinamide (4-HPR) has been investigated extensively in animal models and clinical trials as an anticancer/chemopreventive agent and is currently used for protection against cancer development/recurrence, with minimal side effects. In this study, we performed gene-set enrichment analysis and found that down-regulated genes induced by 4-HPR were associated with FLT3-ITD gene sets. CD34+ AML stem/progenitor cells separated from 32 AML samples were treated with 4-HPR. Correlation analysis showed that AML cells with FLT3-ITD genetic alteration were more sensitive to 4-HPR treatment than those without FLT3-ITD. Next, we treated 22 primary AML cells with 4-HPR and found that 4-HPR was more toxic to AML cells with FLT3-ITD. These results indicated that 4-HPR was preferentially cytotoxic to all FLT3-ITD AML+ cells irrespective of stem/progenitor cells or blast cells. 4-HPR-induced reactive oxygen species (ROS) production and NF-κB inhibition might be the reason of 4-HPR selectivity on FLT3 mutated AML cells.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Tretinoína/análogos & derivados , Tirosina Quinase 3 Semelhante a fms/genética , Compostos de Anilina/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação/genética , NF-kappa B/genética , Pirazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/farmacologia
6.
Bioorg Med Chem Lett ; 30(20): 127470, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795627

RESUMO

Compound 7t, 4-(4-bromophenyl)-6-(1-(4-chlorophenyl)-3-(4-nitrophenyl)-1H-pyrazol-4-yl) pyrimidin-2-amine, is a proven potent anticancer agent exhibiting Hsp90 inhibition in our previous studies. Herein, we explored the apoptotic potential of compound 7t by Annexin V assay. The mechanism underlining the apoptosis process is elucidated. As a potent Hsp90 inhibitor, compound 7t would induce the mitochondrial stress leading to increased permeability of its membrane, that would subsequently initiate the apoptosis in MCF-7 cells. This was proven by increased J-monomer formation using JC-1 stain. Moreover, due to the impaired mitochondrial function, compound 7t also exaggerated the apoptosis process by ROS generation as proved by DCFDA staining. The morphological and nuclear changes in MCF-7 cells following apoptosis were identified by AO/EB and DAPI staining techniques. It also induced subG1 phase cell cycle arrest. Thus, compound 7t could serve as potential drug in the treatment regimen of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
7.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3429-3443, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27614033

RESUMO

BACKGROUND: Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef1-Saccharomyces cerevisiae interaction. METHODS: ApDef1-S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. RESULTS: ApDef1 caused S. cerevisiae cell death and MIC was 7.8µM. Whole cell population died after 18h of ApDef1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef1 induced death. ApDef1-S. cerevisiae interaction resulted in membrane permeabilization, H2O2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. CONCLUSIONS: ApDef1-S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. GENERAL SIGNIFICANCE: We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef1-S. cerevisiae interaction.


Assuntos
Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Defensinas/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/citologia , Antifúngicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Cinética , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
8.
Nanomedicine (Lond) ; 11(9): 1017-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26983681

RESUMO

AIM: We synthesized ultra-small iron oxide nanoparticles (USPIONs) with tripod morphology and studied the effect of the aspect ratio (AR) of the tripod arms on mass magnetization, T2 relaxation and cytocompatibility in human cell lines. MATERIALS & METHODS: Tripods were prepared by controlling the temperature during the thermal decomposition of Fe(CO)5, and their magnetic properties were characterized by superconducting quantum interference device, and NMR. Citric acid stabilized USPIONs were used to assess cytocompatibility. RESULTS: T2 relaxivity of tripods showed dependency on AR of the tripod arm. Liver enzyme levels in presence of tripods were comparable to spherical USPIONs, and surprisingly tripods induced lower levels of reactive oxygen species. CONCLUSION: Tripod USPIONs with high AR arms possess excellent magnetic properties and cytocompatibility for further exploration as MRI contrast agents.


Assuntos
Materiais Revestidos Biocompatíveis/química , Meios de Contraste/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Linhagem Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/uso terapêutico , Meios de Contraste/síntese química , Meios de Contraste/uso terapêutico , Compostos Férricos/química , Compostos Férricos/uso terapêutico , Humanos , Nanopartículas de Magnetita/uso terapêutico , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...